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Abstract

Background—Measles and congenital rubella syndrome remain significant causes of morbidity 

and mortality despite available vaccines. HIV-infected youth may be at increased risk of measles 

because of greater waning immunity following vaccination. At a population level, they constitute a 

potentially large pool of susceptibles to measles and rubella. More data among HIV-infected youth 

in sub-Saharan Africa are needed to guide vaccination policy and control strategies.

Methods—This cross-sectional study was nested within two ongoing studies of malaria and HIV 

in Zambia. Dried blood spot cards from youth (5–15 years) in these studies from 2009–2013 were 

tested for IgG antibodies to measles and rubella viruses. HIV-uninfected youth, HIV-infected 

treatment-naïve youth, and HIV-infected youth receiving antiretroviral therapy (ART) were 

compared.

Results—617 HIV-uninfected, 144 HIV-infected treatment-naïve, and 128 HIV-infected youth 

receiving ART were included in the study. The proportion seropositive for measles virus was 

significantly higher among HIV-uninfected youth (92.5%) compared to HIV-infected treatment-

naïve youth (74.1%) and HIV-infected youth receiving ART (71.9%). No differences by age were 

observed. The proportion seropositive for rubella virus was significantly higher among HIV-

uninfected youth (54.7%) compared with HIV-infected treatment-naïve youth (41.7%) and HIV-

infected youth receiving ART (49.6%), with increases observed by age for all groups.

Conclusions—Measles seroprevalence was lower among HIV-infected than uninfected youth, 

consistent with waning immunity following measles vaccination. HIV-infected youth would likely 

benefit from revaccination. Half of all youth in rural Zambia were susceptible to rubella and may 

need targeting for catch-up rubella campaigns when measles-rubella vaccine is introduced.
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Introduction

Measles and congenital rubella syndrome remain significant causes of morbidity and 

mortality among children, particularly in sub-Saharan Africa.1 While safe and effective 

vaccines are available, high levels of vaccine coverage are required to interrupt measles virus 

transmission and few sub-Saharan African countries have introduced rubella vaccine into 

their routine immunization schedule as of 2015.2 Plans for rubella vaccine introduction in 49 

countries by the end of 2020 are underway.3

Large outbreaks of measles have occurred recently,4–6 and in sub-Saharan Africa they 

increasingly involve older children and adolescents.7 Many factors contribute to these 

outbreaks, including HIV infection. HIV-infected children, the majority of whom live in sub-

Saharan Africa,8 can have poorer primary measles vaccine responses and a higher likelihood 

of waning immunity than HIV-uninfected children in the absence of treatment,9–12 and 

therefore can remain susceptible to measles despite vaccination. Until recently, the impact of 

HIV infection on the buildup of measles susceptibles was limited by the high mortality rate 

of HIV-infected infants.13,14 However, with increased access to life-prolonging therapies,15 

more HIV-infected children survive into adolescence and adulthood, thus creating pockets of 

susceptible individuals that may sustain measles virus transmission and jeopardize 

elimination efforts.14

While antiretroviral treatment (ART) reverses some of the immunologic damage due to HIV 

infection,16,17 immunity to vaccine-preventable diseases does not appear to be restored,18,19 

as immune reconstitution in children primarily occurs with naïve CD4+ T cells20–22 and 

abnormalities in B cell function persist.23,24 Consequently, these children may remain 

susceptible to measles and need revaccination to restore protective immunity. Recently, the 

World Health Organization’s Strategic Advisory Group of Experts (SAGE) recommended 

measles revaccination for HIV-infected children receiving highly active antiretroviral 

therapy following immune reconstitution.25

Limited data are available on immunity to vaccine-preventable diseases among older HIV-

infected children and adolescents with and without ART,26–29 particularly in sub-Saharan 

Africa.30 These data will be needed to guide vaccine policy on revaccination against measles 

and catch-up rubella vaccination. Older children are not traditionally targeted by 

immunization programs but are an increasingly important age group, particularly as 

countries consider wider age ranges for supplemental immunization activities with measles 

and measles-rubella containing vaccines. For rubella, failure to target older girls in 

susceptible age groups could lead to an increase in congenital rubella cases.31

The objectives of this study were to estimate and compare the prevalence of immunity to 

measles and rubella viruses among HIV-infected treatment-naïve youth, HIV-infected 

treatment-experienced youth, and HIV-uninfected youth in rural Zambia.
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Material and Methods

Study Setting and Population

The study was conducted in the catchment area of Macha Hospital in Choma District, 

Southern Province, Zambia. This area is populated by traditional villagers living in scattered 

homesteads, characteristic of much of rural sub-Saharan Africa. The prevalence of HIV 

infection in Choma District was estimated to be 15.7% in 2010.32 Zambia had a large 

measles outbreak in 2010–2011 but has since reported few cases after a nationwide 

supplementary measles immunization campaign in 2012 targeting children from 9 months to 

14 years of age. Reported vaccine coverage in Southern Province was 86% for measles and 

69% were estimated to be fully vaccinated (BCG, measles, and three doses each of DPT-

HepB-Hib and polio vaccine) in 2013.33 Zambia plans to introduce rubella vaccine in 2016.

Patients and Samples

Samples for testing antibodies to measles and rubella viruses were selected from participants 

within two ongoing studies conducted in Macha from 2009–2013. Three groups of youth 5–

15 years of age were selected for comparison: 1) HIV-uninfected youth; 2) HIV-infected 

treatment-naïve youth; and 3) HIV-infected youth receiving ART. Measles vaccination status 

of the study children was not known.

All studies were approved by the Institutional Review Board at the Johns Hopkins 

Bloomberg School of Public Health, a local research ethics committee and the Government 

of Zambia Ministry of Health.

Source of HIV-uninfected youth—In 2007, community-based serial cross-sectional 

surveys were initiated around Macha Hospital to determine changes in the prevalence of 

malaria parasitemia.34,35 Satellite images were used to construct a sampling frame and 

approximately 24 households were randomly selected to be enrolled in each cross-sectional 

survey conducted every other month. All individuals residing within a household were 

eligible to participate. Permission was obtained from the head of household and written 

informed consent was obtained from the individual or parent. For each participant, a 

questionnaire was administered to collect information on demographics, health-seeking 

behavior and use of medications, and a blood sample was collected by finger prick on filter 

paper (Whatman, Protein Saver card 903, Piscateway, New Jersey), dried overnight and 

stored individually with desiccant in a sealed plastic bag at −20°C.

For this study, samples were randomly selected from participants 5–15 years of age who 

enrolled from 2009–2013, had at least three filter paper spots available, and did not report 

use of ART. The target sample size was four HIV-uninfected youth per HIV-infected youth. 

HIV testing was not conducted as part of the study and all participants not reporting ART 

were presumed HIV-uninfected given the low prevalence of HIV infection expected in a 

population-based sample of youth.

Source of HIV-infected youth—In 2007, a cohort study was initiated and all HIV-

infected children younger than 16 years attending the Macha HIV clinic were eligible for 

enrollment.36,37 After obtaining written informed consent from a parent or guardian and 
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assent from children 8–15 years of age, children were seen at study visits every three 

months, at which time a questionnaire was administered, the child was examined and a 

blood sample was collected. Beginning in 2009, blood spots were collected on filter paper 

(Whatman, Protein Saver card 903) at enrollment and after ART initiation. The blood spot 

cards were dried overnight and stored individually with desiccant in a sealed plastic bag at 

−50°C.

For the group of HIV-infected treatment-naïve youth, all available samples were selected 

from the 163 treatment-naïve youth 5–15 years of age at enrollment from 2009–2013. For 

the group of HIV-infected youth receiving ART, the first available sample was selected from 

the 186 youth 5–15 years of age who had been receiving ART for 9 to 24 months from 

2009–2013. Thirty-five youth contributed samples to both groups.

To evaluate the impact of ART on measles and rubella immunity, pairs of samples were 

obtained for children contributing to both the treatment-naïve and ART groups. Additional 

samples were selected for HIV-infected youth receiving ART who had a pre-ART sample 

available at study enrollment prior to 5 years of age.

Laboratory Methods

Serum eluted from dried blood spots (DBS) was tested by enzyme immunoassay (EIA) for 

IgG antibodies to measles and rubella virus (Enzygnost, Siemens, Germany) at the Clinical 

Research Laboratory at Macha Research Trust. Two dried blood spots per participant were 

used. Samples from each of the three groups were randomly selected for testing on each 

plate. Serum was eluted from DBS using 250 µL of elution buffer according to protocol 6 

outlined by Mercader et al.38 50 µL of eluted sample was transferred to labeled 96-well 

plates and sealed. Samples not tested immediately were stored at 4°C overnight for testing 

the following day. The EIA was performed according to the manufacturer’s protocol. The 

optical density (OD) for each sample was read at 450 nM using a BioTek ELx800 

microplate reader. Corrected OD differences (cOD) were calculated using the OD 

differences (antigen-control well), the mean of the positive and negative references and the 

nominal value as specified by the manufacturer.

Volume adjustment—DBS from a known measles and rubella positive individual were 

eluted and tested for IgG antibodies to measles and rubella virus using serum elution 

volumes ranging from 5µL to 50µL. Linear regression was used to determine the effect of 

volume on OD value (estimated mean increase of 0.03 in OD value per 1µL increase in 

volume for the antigen well). The results were the same for measles and rubella tests. The 

regression coefficient was used to calculate adjusted OD values for the antigen well.

Statistical Analysis

Ten percent of measles samples and 3% of rubella samples had less than the required 50 µL 

of sample and adjusted cOD values were calculated (results based on unadjusted cOD values 

are presented in Supplemental Digital Content 1). For rubella, samples with cOD values 

≥2.5 (12% of samples) were assigned a value of 2.5. For all samples with cOD values >0.1, 

measles (mIU/mL) and rubella antibody concentrations (IU/mL) were calculated using the 
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alpha method, as specified by the manufacturer. cOD values between 0.1 and 0.2 were 

considered equivocal and cOD values >0.2 were considered positive for antibodies to 

measles and rubella viruses. A second definition was also used in which cOD values ≥0.1 

were considered positive.

Measles and rubella seroprevalence was compared between the three groups of HIV-infected 

and uninfected youth using chi-square tests and log-binomial regression to adjust for age. 

Antibody concentrations were compared using Wilcoxon rank sum tests. Risk factors for 

susceptibility (cOD≤0.2) were assessed separately for HIV-infected treatment-naïve youth 

and youth receiving ART using log-binomial regression.

Results

Between 2009 and 2013, 617 HIV-uninfected, 144 HIV-infected treatment-naïve, and 128 

HIV-infected youth receiving ART were enrolled and had samples available for testing. The 

characteristics of each group are described in Table 1.

Measles

Seroprevalence—The proportion seropositive (cOD>0.2) for measles virus was 

significantly higher among HIV-uninfected youth (92.5%) compared to HIV-infected 

treatment-naïve youth (74.1%; age-adjusted prevalence ratio [PR]: 0.80, 95% CI: 0.73, 0.89) 

and HIV-infected youth receiving ART (71.9%; age-adjusted PR: 0.78, 95% CI: 0.70, 0.87) 

(Table 2). The proportion of youth with equivocal results was significantly higher for the two 

groups of HIV-infected youth (treatment-naïve=16.1%; receiving ART=15.6%) compared to 

HIV-uninfected youth (4.3%), regardless of age. As a result, the difference in the proportion 

seropositive between the groups was diminished when a lower cutoff for positivity (cOD 

≥0.1) was considered (age-adjusted PR for HIV-infected treatment-naïve youth: 0.93, 95% 

CI: 0.88, 0.99; age-adjusted PR for HIV-infected youth receiving ART: 0.91, 95% CI: 0.85, 

0.97; compared to HIV-uninfected youth).

Within HIV-infected groups, no significant differences by age were observed (Figure 1). 

Within all age categories, the proportion seropositive (OD >0.2) was significantly lower 

among HIV-infected youth, whether treatment-naïve or receiving ART.

Impact of ART—Among HIV-infected youth receiving ART, 54 had a corresponding pre-

ART sample at study enrollment available for testing (18 were obtained prior to 5 years of 

age). The median age at study enrollment was 6.3 years (IQR: 4.7–9.3, range: 2.3–14.7) and 

the median time between pre- and post-ART samples was 1.3 years (IQR: 1.0–1.8). Thirty-

two youth (two seronegative and 30 seropositive) maintained their original serostatus after 

initiating ART. Among the nine seronegative youth at study enrollment, 5 (56%) were 

seropositive and 2 (22%) had equivocal results after initiating ART. Among the 39 

seropositive youth at study enrollment, 3 (8%) were seronegative and 6 (15%) had equivocal 

results. Among the 6 youth with equivocal results at study enrollment, all 6 (100%) were 

seropositive after initiating ART.
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Risk factors for susceptibility among HIV-infected youth—No demographic, 

clinical, or immunologic characteristics were significantly associated with susceptibility in 

either group (Supplemental Digital Content 2).

Rubella

Seroprevalence—The proportion seropositive (cOD>0.2) for rubella virus was 

significantly higher among HIV-uninfected youth (54.7%) compared to HIV-infected 

treatment-naïve youth (41.7%) and HIV-infected youth receiving ART (49.6%) (Table 2), 

although the differences were smaller than for measles. After adjusting for age, the 

proportion seropositive for rubella remained marginally higher among HIV-uninfected youth 

compared to HIV-infected treatment-naïve youth (PR: 0.84, 95% CI: 0.69, 1.01) but no 

difference was observed for HIV-infected youth receiving ART (PR: 0.98, 95% CI: 0.84, 

1.15). The proportion of youth with equivocal results was significantly higher for the two 

groups of HIV-infected youth (treatment-naïve=11.8%; receiving ART=7.9%) compared to 

HIV-uninfected youth (1.1%). As a result, there were no significant differences in the 

proportion seropositive between the groups when a lower cutoff for positivity (cOD ≥0.1) 

was considered (age-adjusted PR for HIV-infected treatment-naïve youth: 0.96, 95% CI: 

0.83, 1.11; age-adjusted PR for HIV-infected youth receiving ART: 1.07, 95% CI: 0.93, 

1.22; compared to HIV-uninfected youth).

Within HIV-infected groups, the proportion seropositive increased with age (Figure 1), 

although the trend was only significant for HIV-uninfected youth. Within age categories, the 

proportion seropositive (cOD>0.2) tended to be lower among HIV-infected treatment-naïve 

youth but not among HIV-infected youth receiving ART.

Impact of ART—Among HIV-infected youth receiving ART, 53 had a corresponding pre-

ART sample at study enrollment available for testing. Twenty-eight youth (16 seronegative, 

1 equivocal, and 11 seropositive) maintained their original serostatus after initiating ART. 

Among the 30 seronegative youth at study enrollment, 10 (33%) were seropositive and 4 

(13%) had equivocal results after initiating ART. Among the 15 seropositive youth, 4 (27%) 

were seronegative after initiating ART. Among the 8 youth with equivocal results, 6 (75%) 

were seronegative and 1 (13%) was seropositive after initiating ART.

Risk factors for susceptibility among HIV-infected youth—Younger age was 

significantly associated with rubella susceptibility for both HIV-infected treatment-naïve 

youth (PR: 0.92; 95% CI: 0.87, 0.98) and HIV-infected youth receiving ART (PR: 0.91; 95% 

CI: 0.85, 0.98) (Supplemental Digital Content 2).

Discussion

In this cross-sectional study, HIV-infected youth in rural Zambia were less likely to be 

seropositive for measles and rubella viruses than HIV-uninfected youth. Based on these 

results, approximately 25% and 50% of HIV-infected youth in this area were susceptible to 

measles and rubella viruses, respectively. The more substantial differences in measles 

seroprevalence likely reflect higher rates of primary or secondary measles vaccine failure, 
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whereas the smaller differences in rubella seroprevalence may reflect waning immunity 

following wild-type virus infection.

Increasing numbers of HIV-infected youth could contribute to lower levels of population 

immunity in areas with a high HIV prevalence.14 Similar to other studies,26,39 HIV-infected 

youth in this study were less likely to be seropositive for measles virus than HIV-uninfected 

youth, despite presumed vaccination during childhood, possible revaccination during the 

supplemental immunization activities, and immune reconstitution with ART. Lower measles 

vaccine coverage among HIV-infected youth is an alternative explanation, although this is 

unlikely given that these children were receiving intensive care. In addition, lower antibody 

concentrations were found in this group, leading to a higher proportion of youth in the 

equivocal range compared to uninfected youth. It is not possible to determine if this was due 

to poorer response to primary vaccination or waning immunity over time. It is also unclear 

whether these children would develop clinical measles or rubella upon re-exposure as they 

may have an anamnestic response or cellular immunity that would confer some protection.18 

These results support existing studies suggesting that ART does not restore immunity to 

measles virus and that HIV-infected children and adolescents could benefit from 

revaccination,18,19,40 as recently recommended by the World Health Organization.25 This 

group could easily be targeted for revaccination through routine care, as they are frequently 

seen at healthcare facilities, or through inclusion of youth in supplemental immunization 

activities.

All HIV-infected youth in this study initiated ART after the age at which they would have 

received measles vaccination. With early infant diagnosis more widely available, infants are 

now initiating ART before their first dose of measles vaccine. Although data are limited, 

immune responses among these infants appear to be better and more similar to those 

observed among healthy HIV-uninfected infants.41,42 Early initiation of ART preserves 

normal development and maintenance of memory B cells,42 and these improvements appear 

to be sustained into adolescence.26 As more children initiate ART in infancy, their immune 

function and responses to vaccines will need to be documented to guide policies.

In this study, approximately half of all adolescents, regardless of HIV or ART status were 

susceptible to rubella virus. As rubella vaccines have not yet been introduced in Zambia, 

immunity in this study was acquired through exposure to wild-type virus. As expected, the 

proportion seropositive increased with age, but was lower than previous reports in the 

region.43–45 This may be due to differences in urban and rural populations, with lower 

population densities and risk of exposure in rural areas. Introduction of measles-rubella 

vaccines may increase the age of infection,31 therefore a large number of susceptible youth 

is a cause for concern. This group may need to be targeted for catch-up immunization 

campaigns when introducing measles-rubella vaccines into the national immunization 

program.

This study had several limitations. First, youth in the control group were not tested for HIV 

and were presumed uninfected. While we expect the HIV prevalence among youth in the 

general population in this area to be low, it is possible that some youth were infected with 

HIV and that the measles and rubella seroprevalence in HIV-infected youth was 
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underestimated. Second, information on vaccination status was not known. Antibodies to 

measles virus were presumed to be primarily vaccine induced but some children may have 

been exposed to wild-type virus. In addition, supplemental immunization activities occurred 

before and during the study period, therefore antibodies levels may be the result of multiple 

vaccinations. As described above, lower measles vaccine coverage among HIV-infected 

youth could also explain the differences in seroprevalence. Regardless of the mechanism, 

these children would likely benefit from revaccination. Third, all HIV-infected youth 

survived to enter the study and initiate ART at older ages. Their experiences may be 

different from children with more rapid disease progression and children initiating ART in 

infancy. Fourth, measles antibody levels were measured by EIA rather than the gold standard 

plaque reduction neutralization assay. While these two assays have good agreement, EIAs 

are less sensitive at lower antibody levels,46 which may have led us to underestimate measles 

seroprevalence among all groups. Fifth, DBS were used that had been stored for up to four 

years. Several studies have documented the concordance of results for antibody levels 

measured from DBS and serum,47–49 even after being stored at −20°C for up to two 

years.50,51 It is possible that longer term storage resulted in some sample degradation, which 

may also have led to underestimation of measles and rubella seroprevalence among all 

groups. Lastly, the number of HIV-infected youth in each treatment group was small, which 

limited our ability to evaluate risk factors for susceptibility.

Global efforts have succeeded in decreasing morbidity and mortality related to measles and 

rubella viruses. Large outbreaks in the past few years, however, have demonstrated that high 

levels of population immunity are required and pockets of susceptible individuals can 

jeopardize control efforts. HIV-infected youth represent an important group that needs to be 

considered in these control efforts. These results support recommendations to revaccinate 

HIV-infected children against measles after initiation of ART and for inclusion of youth in 

supplemental immunization activities and catch-up campaigns for both measles and rubella.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Measles (A) and rubella (B) seroprevalence by age
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Table 1

Characteristics of youth tested for IgG antibodies to measles and rubella viruses in rural southern Zambia

Characteristics at testing HIV-uninfected
youth

HIV-infected
treatment-naïve

youth

HIV-infected
youth receiving

ART

Number 617 144 128

Male: n (%) 288 (47) 65 (45) 68 (53)

Median age in years (IQR)a 9.6 (6.9–12.7) 8.3 (6.3–10.7) 7.9 (5.9–10.5)

  5–6 years: n (%) 157 (25) 48 (33) 51 (40)

  7–8 years: n (%) 118 (19) 36 (25) 30 (23)

  9–10 years: n (%) 99 (16) 26 (18) 16 (12.5)

  11–12: n (%) 108 (18) 16 (11) 16 (12.5)

  13–15: n (%) 135 (22) 18 (13) 15 (12)

Median CD4+ T-cell count (IQR) --- 546 (345–828) 494 (338–818)

Median years on ART (IQR) --- --- 0.96 (0.88–1.2)

ART: antiretroviral therapy; HIV: human immunodeficiency virus; IQR: interquartile range

a
p<0.0001 for difference between groups
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